Bleach - Kurosaki Ichigo's Sword Zangetsu info-unik.tk
content top

Selasa, 30 Oktober 2012

File Tansfer Protocol

Protokol pengiriman berkas (Bahasa inggris: File Transfer Protocol) adalah sebuah protokol Internet yang berjalan di dalam lapisan aplikasi yang merupakan standar untuk pengirimanberkas (filekomputer antar mesin-mesin dalam sebuah Antarjaringan.
FTP merupakan salah satu protokol Internet yang paling awal dikembangkan, dan masih digunakan hingga saat ini untuk melakukan pengunduhan (download) dan penggugahan (upload)berkas-berkas komputer antara klien FTP dan server FTP. Sebuah Klien FTP merupakan aplikasi yang dapat mengeluarkan perintah-perintah FTP ke sebuah server FTP, sementara server FTP adalah sebuah Windows Service atau daemon yang berjalan di atas sebuah komputer yang merespons perintah-perintah dari sebuah klien FTP. Perintah-perintah FTP dapat digunakan untuk mengubah direktori, mengubah modus pengiriman antara biner dan ASCII, menggugah berkas komputer ke server FTP, serta mengunduh berkas dari server FTP.
Sebuah server FTP diakses dengan menggunakan Universal Resource Identifier (URI) dengan menggunakan format ftp://namaserver. Klien FTP dapat menghubungi server FTP dengan membuka URI tersebut.

Cara kerja protokol FTP
FTP menggunakan protokol Transmission Control Protocol (TCP) untuk komunikasi data antara klien dan server, sehingga di antara kedua komponen tersebut akan dibuatlah sebuah sesi komunikasi sebelum pengiriman data dimulai. Sebelum membuat koneksi, port TCP nomor 21 di sisi server akan "mendengarkan" percobaan koneksi dari sebuah klien FTP dan kemudian akan digunakan sebagai port pengatur (control port) untuk (1) membuat sebuah koneksi antara klien dan server, (2) untuk mengizinkan klien untuk mengirimkan sebuah perintah FTP kepada server dan juga (3) mengembalikan respons server ke perintah tersebut. Sekali koneksi kontrol telah dibuat, maka server akan mulai membuka port TCP nomor 20 untuk membentuk sebuah koneksi baru dengan klien untuk mengirim data aktual yang sedang dipertukarkan saat melakukan pengunduhan dan penggugahan.
FTP hanya menggunakan metode autentikasi standar, yakni menggunakan username danpassword yang dikirim dalam bentuk tidak terenkripsi. Pengguna terdaftar dapat menggunakanusername dan password-nya untuk mengakses, men-download, dan meng-upload berkas-berkas yang ia kehendaki. Umumnya, para pengguna terdaftar memiliki akses penuh terhadap beberapa direktori, sehingga mereka dapat membuat berkas, membuat direktori, dan bahkan menghapus berkas. Pengguna yang belum terdaftar dapat juga menggunakan metode anonymous login, yakni dengan menggunakan nama pengguna anonymous dan password yang diisi dengan menggunakan alamat e-mail.

RIP (Routing Information Protocol)


Routing Information Protocol (RIP) adalah sebuah protokol routing dinamis yang digunakan dalam jaringan LAN (Local Area Network) dan WAN (Wide Area Network). Oleh karena itu protokol ini diklasifikasikan sebagai Interior Gateway Protocol (IGP). Protokol ini menggunakan algoritma Distance-Vector Routing. Pertama kali didefinisikan dalam RFC 1058 (1988). Protokol ini telah dikembangkan beberapa kali, sehingga terciptalah RIP Versi 2 (RFC 2453). Kedua versi ini masih digunakan sampai sekarang, meskipun begitu secara teknis mereka telah dianggap usang oleh teknik-teknik yang lebih maju, seperti Open Shortest Path First (OSPF) dan protokol OSI IS-IS. RIP juga telah diadaptasi untuk digunakan dalam jaringan IPv6, yang dikenal sebagai standar RIPng (RIP Next Generation/ RIP generasi berikutnya), yang diterbitkan dalam RFC 2080 (1997).

Cara Kerja RIP

  1. Host mendengar pada alamat broadcast jika ada update routing dari gateway.
  2. Host akan memeriksa terlebih dahulu routing table lokal jika menerima update routing .
  3. Jika rute belum ada, informasi segera dimasukkan ke routing table .
  4. Jika rute sudah ada, metric yang terkecil akan diambil sebagai acuan.
  5. Rute melalui suatu gateway akan dihapus jika tidak ada update dari gateway tersebut dalam waktu tertentu
  6. Khusus untuk gateway, RIP akan mengirimkan update routing pada alamat broadcast di setiap network yang terhubung

Karakteristik dari RIP:

  1. Distance vector routing protocol
  2. Hop count sebagi metric untuk memilih rute
  3. Maximum hop count 15, hop ke 16 dianggap unreachable
  4. Secara default routing update 30 detik sekali
  5. RIPv1 (classfull routing protocol) tidak mengirimkan subnet mask pada update
  6. RIPv2 (classless routing protocol) mengirimkan subnet mask pada update

Kelebihan dan Kekurangan

1. Kelebihan

RIP  menggunakan  metode  Triggered  Update.  RIP  memiliki  timer  untuk mengetahui  kapan  router  harus  kembali  memberikan  informasi  routing.  Jika terjadi perubahan pada jaringan, sementara timer belum habis, router tetap harus mengirimkan  informasi  routing  karena  dipicu  oleh  perubahan  tersebut  (triggered update). Mengatur  routing  menggunakan  RIP  tidak  rumit  dan  memberikan  hasil  yang cukup dapat diterima, terlebih jika jarang terjadi kegagalan link jaringan

2. Kekurangan

Dalam implementasi RIP memang mudah untuk digunakan, namun RIP mempunyai masalah serius pada Autonomous System yang besar, yaitu :
  1. Terbatasnya diameter network, Telah disebutkan sedikit di atas bahwa RIP hanya bisa menerima metrik sampai 15. Lebih dari itu tujuan dianggap tidak terjangkau. Hal ini bisa menjadi masalah pada network yang besar.
  2. Konvergensi yang lambat Untuk menghapus entry tabel routing yang bermasalah, RIP mempunyai metode yang tidak efesien. Seperti pada contoh skema network di atas, misalkan subnet 10 bernilai 1 hop dari router 2 dan bernilai 2 hop dari router 3. Ini pada kondisi bagus, namun apabila router 1 crash, maka subnet 3 akan dihapus dari table routing kepunyaan router 2 sampai batas waktu 180 detik. Sementara itu, router 3 belum mengetahui bahwa subnet 3 tidak terjangkau, ia masih mempunyai table routing yang lama yang menyatakan subnet 3 sejauh 2 hop (yang melalui router 2). Waktu subnet 3 dihapus dari router 2, router 3 memberikan informasi ini kepada router 2 dan router 2 melihat bahwa subnet 3 bisa dijangkau lewat router 3 dengan 3 hop ( 2 + 1 ). Karena ini adalah routing baru maka ia akan memasukkannya ke dalam KRT. Berikutnya, router 2 akan mengupdate routing table dan memberikannya kepada router 3 bahwa subnet 3 bernilai 3 hop. Router 3 menerima dan menambahkan 1 hop lagi menjadi 4. Lalu tabel routing diupdate lagi dan router 2 meneriman informasi jalan menuju subnet 3 menjadi 5 hop. Demikian seterusnya sampai nilainya lebih dari 30. Routing atas terus menerus looping sampai nilainya lebih dari 30 hop.
  3. Tidak bisa membedakan network masking lebih dari /24, RIP membaca IP address berdasarkan kepada kelas A, B dan C. Seperti kita ketahui bahwa kelas C mempunyai masking 24 bit. Dan masking ini masih bias diperpanjang menjadi 25 bit, 26 bit dan seterusnya. RIP tidak dapat membacanya bila lebih dari 24 bit. Ini adalah masalah besar, mengingat masking yang lebih dari 24 bit banyak dipakai. Hal ini sudah dapat di atasi pada RIPv2.
  4. Jumlah  host  Terbatas.
  5. RIP  tidak  memiliki  informasi  tentang  subnet  setiap  route.
  6. RIP  tidak  mendukung  Variable  Length  Subnet  Masking  (VLSM)Ketika  pertama kali dijalankan hanya mengetahui cara routing ke dirinya sendiri (informasi lokal) dan tidak mengetahui topologi jaringan tempatnya berada

Versi

Ada tiga versi dari Routing Information Protocol: RIPv1, RIPv2, dan RIPng.

1. RIP versi 1

Spesifikasi asli RIP, didefinisikan dalam RFC 1058, classful menggunakan routing. Update routing periodik tidak membawa informasi subnet, kurang dukungan untuk Variable Length Subnet Mask (VLSM). Keterbatasan ini tidak memungkinkan untuk memiliki subnet berukuran berbeda dalam kelas jaringan yang sama. Dengan kata lain, semua subnet dalam kelas jaringan harus memiliki ukuran yang sama. Juga tidak ada dukungan untuk router otentikasi, membuat RIP rentan terhadap berbagai serangan.

2. RIP versi 2

Karena kekurangan RIP asli spesifikasi, RIP versi 2 (RIPv2) dikembangkan pada tahun 1993 dan standar terakhir pada tahun 1998. Ini termasuk kemampuan untuk membawa informasi subnet, sehingga mendukung Classless Inter-Domain Routing (CIDR). Untuk menjaga kompatibilitas, maka batas hop dari 15 tetap. RIPv2 memiliki fasilitas untuk sepenuhnya beroperasi dengan spesifikasi awal jika semua protokol Harus Nol bidang dalam pesan RIPv1 benar ditentukan. Selain itu, aktifkan kompatibilitas fitur memungkinkan interoperabilitas halus penyesuaian.

3. RIPng


RIPng (RIP Next Generation / RIP generasi berikutnya), yang didefinisikan dalam RFC 2080, adalah perluasan dari RIPv2 untuk mendukung IPv6, generasi Internet Protocol berikutnya. Perbedaan utama antara RIPv2 dan RIPng adalah:


  1. Dukungan dari jaringan IPv6.
  2. RIPv2 mendukung otentikasi RIPv1, sedangkan RIPng tidak. IPv6 router itu, pada saat itu, seharusnya menggunakan IP Security (IPsec) untuk otentikasi.
  3. RIPv2 memungkinkan pemberian beragam tag untuk rute , sedangkan RIPng tidak;
  4. RIPv2 meng-encode hop berikutnya (next-hop) ke setiap entry route, RIPng membutuhkan penyandian (encoding) tertentu dari hop berikutnya untuk satu set entry route.

Batasan:

  1. Hop count tidak dapat melebihi 15, dalam kasus jika melebihi akan dianggap tidak sah. Hop tak hingga direpresentasikan dengan angka 16.
  2. Sebagian besar jaringan RIP datar. Tidak ada konsep wilayah atau batas-batas dalam jaringan RIP.
  3. Variabel Length Subnet Masks tidak didukung oleh RIP IPv4 versi 1 (RIPv1).      
  4. RIP memiliki konvergensi lambat dan menghitung sampai tak terhingga masalah.

OSPF (OPEN SHORTEST PATH FIRST)


Teknologi link-state dikembangkan dalam ARPAnet untuk menghasilkan protokol yang terdistribusi yang jauh lebih baik daripada protokol distance-vector. Alih-alih saling bertukar jarak (distance) ke tujuan, setiap router dalam jaringan memiliki peta jaringan yang dapat diperbarui dengan cepat setelah setiap perubahan topologi. Peta ini digunakan untuk menghitung route yang lebih akurat daripada menggunakan protokol distance-vector. Perkembangan teknologi ini akhirnya menghasilkan protokol Open Shortest Path First (OSPF) yang dikembangkan oleh IETF (Internet Engineering Task Force) untuk digunakan di Internet. Bahkan sekarang Internet Architecture Board (IAB) telah merekomendasikan OSPF sebagai pengganti RIP.

Prinsip link-state routing sangat sederhana. Sebagai pengganti menghitung route “terbaik” dengan cara terdistribusi, semua router mempunyai peta jaringan dan menghitung semua route yang terbaik dari peta ini. Peta jaringan tersebut disimpan dalam sebuah basis data dan setiap record dalam basis data tersebut menyatakan sebuah link dalam jaringan. Record-record tersebut dikirimkan oleh router yang terhubung langsung dengan masing-masing link.

Karena setiap router perlu memiliki peta jaringan yang menggambarkan kondisi terakhir topologi jaringan yang lengkap, setiap perubahan dalam jaringan harus diikuti oleh perubahan dalam basis data link-state yang terletak di setiap router. Perubahan status link yang dideteksi router akan mengubah basis data link-state router tersebut, kemudian router mengirimkan perubahan tersebut ke router-router lain.

Protokol yang digunakan untuk mengirimkan perubahan ini harus cepat dan dapat diandalkan. Ini dapat dicapai oleh protokol flooding. Dalam protokol flooding, pesan yang dikirim adalah perubahan dari basis data serta nomor urut pesan tersebut. Dengan hanya mengirimkan perubahan basis data, waktu yang diperlukan untuk pengiriman dan pemrosesan pesan tersebut lebih sedikit dibandingdengan mengirim seluruh isi basis data tersebut. Nomor urut pesan diperlukan untuk mengetahui apakah pesan yang diterima lebih baru daripada yang terdapat dalam basis data. Nomor urut ini berguna pada kasus link yang putus menjadi tersambung kembali.

Pada saat terdapat link putus dan jaringan menjadi terpisah, basis data kedua bagian jaringan tersebut menjadi berbeda. Ketika link yang putus tersebut hidup kembali, basis data di semua router harus disamakan. Basis data ini tidak akan kembali sama dengan mengirimkan satu pesan link-state saja. Proses penyamaan basis data pada router yang bertetangga disebut sebagai menghidupkan adjacency. Dua buah router bertetangga disebut sebagai adjacent bila basis data link-state keduanya telah sama. Dalam proses ini kedua router tersebut tidak saling bertukar basis data karena akan membutuhkan waktu yang lama.

Proses menghidupkan adjacency terdiri dari dua fasa.Fasa pertama, kedua router saling bertukar deskripsi basis data yang merupakan ringkasan dari basis data yang dimiliki setiap router. Setiap router kemudian membandingkan deskripsi basis data yang diterima dengan basis data yang dimilikinya. Pada fasa kedua, setiap router meminta tetangganya untuk mengirimkan record-record basis data yang berbeda, yaitu bila router tidak memiliki record tersebut, atau nomor urut record yang dimiliki lebih kecil daripada yang dikirimkan oleh deskripsi basis data. Setelah proses ini, router memperbarui beberapa record dan ini kemudian dikirimkan ke router-router lain melalui protokol flooding.

Protokol link-state lebih baik daripada protokol distance-vector disebabkan oleh beberapa hal: waktu yang diperlukan untuk konvergen lebih cepat, dan lebih penting lagi protokol ini tidak menghasilkan routing loop. Protokol ini mendukung penggunaan beberapa metrik sekaligus. Throughput, delay, biaya, dan keandalan adalah metrik-metrik yang umum digunakan dalam jaringan. Di samping itu protokol ini juga dapat menghasilkan banyak jalur ke sebuah tujuan. Misalkan router A memiliki dua buah jalur dengan metrik yang sama ke host B. Protokol dapat memasukkan kedua jalur tersebut ke dalam forwarding table sehingga router mampu membagi beban di antara kedua jalur tersebut.

Rancangan OSPF menggunakan protokol link-state dengan beberapa penambahan fungsi. Fungsi-fungsi yang ditambahkan antara lain mendukung jaringan multi-akses, seperti X.25 dan Ethernet, dan membagi jaringan yang besar mejadi beberapa area.

Telah dijelaskan di atas bahwa setiap router dalam protokol link-state perlu membentuk adjacency dengan router tetangganya. Pada jaringan multi-akses, tetangga setiap router dapat lebih dari satu. Dalam situasi seperti ini, setiap router dalam jaringan perlu membentuk adjacency dengan semua router yang lain, dan ini tidak efisien. OSPF mengefisienkan adjacency ini dengan memperkenalkan konsep designated router dan designated router cadangan. Semua router hanya perlu adjacent dengan designated router tersebut, sehingga hanya designated router yang adjacent dengan semua router yang lain. Designated router cadangan akan mengambil alih fungsi designated router yang gagal berfungsi.

Langkah pertama dalam jaringan multi-akses adalah memilih designated router dan cadangannya. Pemilihan ini dimasukkan ke dalam protokol Hello, protokol dalam OSPF untuk mengetahui tetangga-tetangga router dalam setiap link. Setelah pemilihan, baru kemudian router-router membentuk adjacency dengan designated router dan cadangannya. Setiap terjadi perubahan jaringan, router mengirimkan pesan menggunakan protokol flooding ke designated router, dan designated router yang mengirimkan pesan tersebut ke router-router lain dalam link.



Designated router cadangan juga mendengarkan pesan-pesan yang dikirim ke designated router. Jika designated router gagal, cadangannya kemudian menjadi designated router yang baru serta dipilih designated router cadangan yang baru. Karena designated router yang baru telah adjacent dengan router-router lain, tidak perlu dilakukan lagi proses penyamaan basis data yang membutuhkan waktu yang lama tersebut.




Dalam jaringan yang besar tentu dibutuhkan basis data yang besar pula untuk menyimpan topologi jaringan. Ini mengarah kepada kebutuhan memori router yang lebih besar serta waktu perhitungan route yang lebih lama. Untuk mengantisipasi hal ini, OSPF menggunakan konsep area dan backbone. Jaringan dibagi menjadi beberapa area yang terhubung ke backbone. Setiap area dianggap sebagai jaringan tersendiri dan router-router di dalamnya hanya perlu memiliki peta topologi jaringan dalam area tersebut. Router-router yang terletak di perbatasan antar area hanya mengirimkan ringkasan dari link-link yang terdapat dalam area dan tidak mengirimkan topologi area satu ke area lain. Dengan demikian, perhitungan route menjadi lebih sederhana.

Kesederhanaan vs. Kemampuan

Kita sudah lihat sepintas bagaimana RIP dan OSPF bekerja. Setiap protokol routing memiliki kelebihan dan kekurangannya masing-masing. Protokol RIP sangat sederhana dan mudah diimplementasikan tetapi dapat menimbulkan routing loop. Protokol OSPF merupakan protokol yang lebih rumit dan lebih baik daripada RIP tetapi membutuhkan memori dan waktu CPU yang besar.

Di berbagai tempat juga terdapat yang menggunakan gabungan antara routing statik, RIP, RIP-v2, dan OSPF. Hasilnya di jaringan ini menunjukkan bahwa administrasi routing statik jauh lebih memakan waktu dibanding routing dinamik. Pengamatan pada protokol routing dinamik juga menunjukkan bahwa RIP menggunakan bandwidth yang lebih besar daripada OSPF dan semakin besar jaringan, bandwidth yang digunakan RIP bertambah lebih besar pula. Jadi, jika Anda sedang mendesain jaringan TCP/IP yang besar tentu OSPF merupakan pilihan protokol routing yang tepat

Tahapan dalam membentuk adjacency

Pada saat baru pertama ON, router OSPF tidak tahu apapun tentang tetangganya, router akan mulai mengirimkan paket Hello ke seluruh interface jaringan untuk memperkenalkan dirinya. Jika router yang baru ON ini menerima paket hello yang menyimpan informasi tentang dirinya maka router ini dapat saling berhubungan dua arah dengan router pengirim hello, Default nilai hello pada broadcast multi-access adalah 10 detik dan 40 detik jika tidak ada respon akan mati, dan pada NBMA hello 30 detik dan akan mati pada 120 detik jika tidak terdapat respon.
  1. Down : router tidak dapat hello packet dari router manapun
  2. Attempt : router mengirimkan hello packet tetapi belum mendapat respon, hanya ada pada tipe NT non broadcast multi-access (NBMA) dan tidak ada respon dari router lain.
  3. Init : router mendapatkan hello packet dari router lain, tetapi belum terbentuk hubungan yang bidirectional (2 way)
  4. 2 way : pada tahap ini hubungan antar router sudah bi-directional, untuk NT broadcast DR & BDR nya akan melanjutkan ke tahap full, router non DR & BDR akan melanjutkan Full hanya dengan DR & BDR saja
  5. Exstart : terjadi pemilihan Master dan Slave, master adalah router yang memiliki router id tertinggi
  6. exchange : terjadi pertukaran Database Descriptor (DBD) paket DBD ini digambarkan dari topologi DB router, proses dimulai oleh master
  7. Loading : router akan memeriksa DBD dari router lain dan apabila ada entry yang tidak diketahui maka router akan mengira link state request (LSR) , LSR akan dibales dengan link state state ACK dan link state reply, diakhir tahap ini semua router yang di adjacent memiliki topologi DB yang sama
  8. Full : masing-masing router sudah membentuk hubungan yang adjancent.

Pemilihan DR & BDR

Dalam jaringan multi akses router-router akan memilih DR (designated router) dan BDR(Backup designated router) dan berusaha adjencent dengan kedua router tersebut.
  1. Router Priority
  2. Router ID
  3. Router priority diset per interface nilainya 0-255
  4. Router (config-if)# IP OSPF priority [0-255]
  5. Router mempunyai priority 0 tidak akan menjadi DR/BDR, statusnya DROTHER, semakin besar priority semakin besar kemungkinan dipilih menjadi BR (Priority paling tinggi) dan BDR (kedua paling tinggi / slave)
  6. Setting nya oleh administrator, sesuai yang mana dulu routernya UP
  7. Apabila priority router sama maka yang digunakan untuk menentukan DR/BDR adalah Router ID
  8. Pada tiap NT non broadcast (ex : Frame Relay) router yang menjadi DR adalah router yang memiliki link ke semua router yang lain (mutipoint) Jika terjadi DR & BDR mati maka router-router akan mengadakan pemilihan untuk menggantikan router yang mati tersebut. Proses floading adalah router dengan paket LSA harus meneruskan paket ke semua jaringan, dan memasukkan informasi LSA dalam databasenya , jika paket data yang diterima tidak baru maka akan di drop, disebut floading karena seolah-olah membanjiri jaringan dengan LSA (link state advertisement) Setiap kali BD linkstate router berubah, router kembali perlu menghitung rute terbaik dan membentuk table routing terbaru, dengan biaya terendah dan shortest path terpendek

OSPF Routing Protocol Untuk Jaringan Lokal

Kekuatan dari OSPF ada pada sistem hirarkinya yang diterapkan dalam sistem area. Penyebaran informasi routing menjadi lebih teratur dan juga mudah untuk di-troubleshooting.

Langkah pertama yang harus dilakukan oleh OSPF adalah membentuk komunikasi dengan para router tetangganya. Tujuannya adalah agar informasi apa yang belum diketahui oleh router tersebut dapat diberi tahu oleh router tetangganya.

Begitu pula router tetangga tersebut juga akan menerima informasi dari router lain yang bertindak sebagai tetangganya. Sehingga pada akhirnya seluruh informasi yang ada dalam sebuah jaringan dapat diketahui oleh semua router yang ada dalam jaringan tersebut. Kejadian ini sering disebut dengan istilah Convergence.
Setelah router membentuk komunikasi dengan para tetangganya, maka proses pertukaran informasi routing berlangsung dengan menggunakan bantuan beberapa paket khusus yang bertugas membawa informasi routing tersebut. Paket-paket tersebut sering disebut dengan istilah Link State Advertisement packet (LSA packet). Selain dari hello packet, routing protokol OSPF juga sangat bergantung kepada paket jenis ini untuk dapat bekerja.

OSPF memang memiliki sistem update informasi routing yang cukup teratur dengan rapi. Teknologinya menentukan jalur terpendek dengan algoritma Shortest Path First (SPF) juga sangat hebat. Meskipun terbentang banyak jalan menuju ke sebuah lokasi, namun OSPF dapat menentukan jalan mana yang paling baik dengan sangat tepat. Sehingga komunikasi data Anda menjadi lancar dan efisien.
Namun ada satu lagi keunggulan OSPF, yaitu konsep jaringan hirarki yang membuat proses update informasinya lebih termanajemen dengan baik. Dalam menerapkan konsep hirarki ini, OSPF menggunakan pembagian jaringan berdasarkan konsep area-area. Pembagian berdasarkan area ini yang juga merupakan salah satu kelebihan OSPF.


Untuk Apa Konsep Area dalam OSPF?


OSPF dibuat dan dirancang untuk melayani jaringan lokal berskala besar. Artinya OSPF haruslah memiliki nilai skalabilitas yang tinggi, tidak mudah habis atau “mentok” karena jaringan yang semakin diperbesar. Namun nyatanya pada penerapan OSPF biasa, beberapa kejadian juga dapat membuat router OSPF kewalahan dalam menangani jaringan yang semakin membesar. Router OSPF akan mencapai titik kewalahan ketika:


  1. Semakin membesarnya area jaringan yang dilayaninya akan semakin banyak informasi yang saling dipertukarkan. Semakin banyak router yang perlu dilayani untuk menjadi neighbour dan adjacence. Dan semakin banyak pula proses pertukaran informasi routing terjadi. Hal ini akan membuat router OSPF membutuhkan lebih banyak sumber memory dan processor. Jika router tersebut tidak dilengkapi dengan memory dan processor yang tinggi, maka masalah akan terjadi pada router ini.
  2. Topology table akan semakin membesar dengan semakin besarnya jaringan. Topology table memang harus ada dalam OSPF karena OSPF termasuk routing protocol jenis Link State. Topology table menrupakan tabel kumpulan informasi state seluruh link yang ada dalam jaringan tersebut. Dengan semakin membesarnya jaringan, maka topology table juga semakin membengkak besarnya. Pembengkakan ini akan mengakibatkan router menjadi lama dalam menentukan sebuah jalur terbaik yang akan dimasukkan ke routing table. Dengan demikian, performa forwarding data juga menjadi lamban.
  3. Topology table yang semakin membesar akan mengakibatkan routing table semakin membesar pula. Routing table merupakan kumpulan informasi rute menuju ke suatu lokasi tertentu. Namun, rute-rute yang ada di dalamnya sudah merupakan rute terbaik yang dipilih menggunakan algoritma Djikstra. Routing table yang panjang dan besar akan mengakibatkan pencarian sebuah jalan ketika ingin digunakan menjadi lambat, sehingga proses forwarding data juga semakin lambat dan menguras tenaga processor dan memory. Performa router menjadi berkurang.

Bagaimana Konsep Area Dapat Mengurangi Masalah?

Ketika sebuah jaringan semakin membesar dan membesar terus, routing protokol OSPF tidak efektif lagi jika dijalankan dengan hanya menggunakan satu area saja. Seperti telah Anda ketahui, OSPF merupakan routing protokol berjenis Link State. Maksudnya, routing protokol ini akan mengumpulkan data dari status-status setiap link yang ada dalam jaringan OSPF tersebut.

Apa jadinya jika jaringan OSPF tersebut terdiri dari ratusan bahkan ribuan link di dalamnya? Tentu proses pengumpulannya saja akan memakan waktu lama dan resource processor yang banyak. Setelah itu, proses penentuan jalur terbaik yang dilakukan OSPF juga menjadi sangat lambat.

Berdasarkan limitasi inilah konsep area dibuat dalam OSPF. Tujuannya adalah untuk mengurangi jumlah link-link yang dipantau dan dimonitor statusnya agar penyebaran informasinya menjadi cepat dan efisien serta tidak menjadi rakus akan tenaga processing dari perangkat router yang menjalankannya.


Bagaimana Informasi Link State Disebarkan?

Untuk menyebarkan informasi Link State ke seluruh router dalam jaringan, OSPF memiliki sebuah sistem khusus untuk itu. Sistem ini sering disebut dengan istilah Link State Advertisement (LSA). Dalam menyebarkan informasi ini, sistem LSA menggunakan paket-paket khusus yang membawa informasi berupa status-status link yang ada dalam sebuah router. Paket ini kemudian dapat tersebar ke seluruh jaringan OSPF. Semua informasi link yang ada dalam router dikumpulkan oleh proses OSPF, kemudian dibungkus dengan paket LSA ini dan kemudian dikirimkan ke seluruh jaringan OSPF.
OSPF menggunakan protokol routing link -state, dengan karakteristik sebagai berikut:


  1. Protokol routing link-state.
  2. Merupakan open standard protocol routing yang dijelaskan di RFC 2328. Menggunakan algoritma SPF untuk menghitung cost terendah.
  3. Update routing dilakukan secara floaded saat terjadi perubahan topologi jaringan.
  4. OSPF adalah linkstate protokol dimana dapat memelihara rute dalam dinamik network struktur dan dapat dibangun beberapa bagian dari subnetwork.
  5. OSPF lebih effisien daripada RIP.
  6. Antara RIP dan OSPF menggunakan di dalam Autonomous System ( AS ).
  7. Menggunakan protokol broadcast.


Paket LSA

Seperti telah dijelaskan di atas, paket LSA di dalamnya akan berisi informasi seputar link-link yang ada dalam sebuah router dan statusnya masing-masing. Paket LSA ini kemudian disebarkan ke router-router lain yang menjadi neighbour dari router tersebut. Setelah informasi sampai ke router lain, maka router tersebut juga akan menyebarkan LSA miliknya ke router pengirim dan ke router lain.

Pertukaran paket LSA ini tidak terjadi hanya pada saat awal terbentuknya sebuah jaringan OSPF, melainkan terus menerus jika ada perubahan link status dalam sebuah jaringan OSPF. Namun, LSA yang disebarkan kali pertama tentu berbeda dengan yang disebarkan berikutnya. Karena LSA yang pertama merupakan informasi yang terlengkap seputar status dari link-link dalam jaringan, sedangkan LSA berikutnya hanyalah merupakan update dari perubahan status yang terjadi.

Paket-paket LSA juga dibagi menjadi beberapa jenis. Pembagian ini dibuat berdasarkan informasi yang terkandung di dalamnya dan untuk siapa LSA ini ditujukan. Untuk membedakan jenisjenisnya ini, OSPF membagi paket LSA nya menjadi tujuh tipe. Masing-masing tipe memiliki kegunaannya masing-masing dalam membawa informasi Link State. Anda dapat melihat kegunaan masing-masing paket pada tabel “Tipe-tipe LSA packet”.

Tipe-Tipe Router OSPF

Seperti telah Anda ketahui, OSPF menggunakan konsep area dalam menjamin agar penyebaran informasi tetap teratur baik. Dengan adanya sistem area-area ini, OSPF membedakan lagi tipe-tipe router yang berada di dalam jaringannya. Tipe-tipe router ini dikategorikan berdasarkan letak dan perannya dalam jaringan OSPF yang terdiri dari lebih dari satu area. Di mana letak sebuah router dalam jaringan OSPF juga sangat berpengaruh terhadap fungsinya. Jadi dengan demikian, selain menunjukkan lokasi di mana router tersebut berada, nama-nama tipe router ini juga akan menunjukkan fungsinya. Berikut ini adalah beberapa tipe router OSPF berdasarkan letaknya dan juga sekaligus fungsinya:

1. Internal Router


Router yang digolongkan sebagai internal router adalah router-router yang berada dalam satu area yang sama. Router-router dalam area yang sama akan menanggap router lain yang ada dalam area tersebut adalah internal router. Internal router tidak memiliki koneksi-koneksi dengan area lain, sehingga fungsinya hanya memberikan dan menerima informasi dari dan ke dalam area tersebut. Tugas internal router adalah me-maintain database topologi dan routing table yang akurat untuk setiap subnet yang ada dalam areanya. Router jenis ini melakukan flooding LSA informasi yang dimilikinya ini hanya kepada router lain yang dianggapnya sebagai internal router.

2. Backbone Router


Salah satu peraturan yang diterapkan dalam routing protokol OSPF adalah setiap area yang ada dalam jaringan OSPF harus terkoneksi dengan sebuah area yang dianggap sebagai backbone area. Backbone area biasanya ditandai dengan penomoran 0.0.0.0 atau sering disebut dengan istilah Area 0. Router-router yang sepenuhnya berada di dalam Area 0 ini dinamai dengan istilah backbone router. Backbone router memiliki semua informasi topologi dan routing yang ada dalam jaringan OSPF tersebut.

3. Area Border Router (ABR)

Sesuai dengan istilah yang ada di dalam namanya “Border”, router yang tergolong dalam jenis ini adalah router yang bertindak sebagai penghubung atau perbatasan. Yang dihubungkan oleh router jenis ini adalah area-area yang ada dalam jaringan OSPF. Namun karena adanya konsep backbone area dalam OSPF, maka tugas ABR hanyalah melakukan penyatuan antara Area 0 dengan area-area lainnya. Jadi di dalam sebuah router ABR terdapat koneksi ke dua area berbeda, satu koneksi ke area 0 dan satu lagi ke area lain. Router ABR menyimpan dan menjaga informasi setiap area yang terkoneksi dengannya. Tugasnya juga adalah menyebarkan informasi tersebut ke masing-masing areanya. Namun, penyebaran informasi ini dilakukan dengan menggunakan LSA khusus yang isinya adalah summarization dari setiap segment IP yang ada dalam jaringan tersebut. Dengan adanya summary update ini, maka proses pertukaran informasi routing ini tidak terlalu memakan banyak resource processing dari router dan juga tidak memakan banyak bandwidth hanya untuk update ini.

4. Autonomous System Boundary Router (ASBR)

Sekelompok router yang membentuk jaringan yang masih berada dalam satu hak administrasi, satu kepemilikan, satu kepentingan, dan dikonfigurasi menggunakan policy yang sama, dalam dunia jaringan komunikasi data sering disebut dengan istilah Autonomous System (AS). Biasanya dalam satu AS, router-router di dalamnya dapat bebas berkomunikasi dan memberikan informasi. Umumnya, routing protocol yang digunakan untuk bertukar informasi routing adalah sama pada semua router di dalamnya. Jika menggunakan OSPF, maka semuanya tentu juga menggunakan OSPF.

Namun, ada kasus-kasus di mana sebuah segmen jaringan tidak memungkinkan untuk menggunakan OSPF sebagai routing protokolnya. Misalkan kemampuan router yang tidak memadai, atau kekurangan sumber daya manusia yang paham akan OSPF, dan banyak lagi. Oleh sebab itu, untuk segmen ini digunakanlah routing protocol IGP (Interior Gateway Protocol) lain seperti misalnya RIP. Karena menggunakan routing protocol lain, maka oleh jaringan OSPF segmen jaringan ini dianggap sebagai AS lain.

Untuk melayani kepentingan ini, OSPF sudah menyiapkan satu tipe router yang memiliki kemampuan ini. OSPF mengategorikan router yang menjalankan dua routing protokol di dalamnya, yaitu OSPF dengan routing protokol IGP lainnya seperti misalnya RIP, IGRP, EIGRP, dan IS-IS, kemudian keduanya dapat saling bertukar informasi routing, disebut sebagai Autonomous System Border Router (ASBR).

Router ASBR dapat diletakkan di mana saja dalam jaringan, namun yang pasti router tersebut haruslah menjadi anggota dari Area 0-nya OSPF. Hal ini dikarenakan data yang meninggalkan jaringan OSPF juga dianggap sebagai meninggalkan sebuah area. Karena adanya peraturan OSPF yang mengharuskan setiap area terkoneksi ke backbone area, maka ASBR harus diletakkan di dalam backbone area.

Jenis Area dalam OSPF

Setelah membagi-bagi jaringan menjadi bersistem area dan membagi router-router di dalamnya menjadi beberapa jenis berdasarkan posisinya dalam sebuah area, OSPF masih membagi lagi jenis-jenis area yang ada di dalamnya. Jenis-jenis area OSPF ini menunjukkan di mana area tersebut berada dan bagaimana karakteristik area tersebut dalam jaringan. Berikut ini adalah jenis-jenis area dalam OSPF:

1. Backbone Area


Backbone area adalah area tempat bertemunya seluruh area-area lain yang ada dalam jaringan OSPF. Area ini sering ditandai dengan angka 0 atau disebut Area 0. Area ini dapat dilewati oleh semua tipe LSA kecuali LSA tipe 7 yang sudah pasti akan ditransfer menjadi LSA tipe 5 oleh ABR.

2. Standar Area


Area jenis ini merupakan area-area lain selain area 0 dan tanpa disertai dengan konfigurasi apapun. Maksudnya area ini tidak dimodifikasi macam-macam. Semua router yang ada dalam area ini akan mengetahui informasi Link State yang sama karena mereka semua akan saling membentuk adjacent dan saling bertukar informasi secara langsung. Dengan demikian, semua router yang ada dalam area ini akan memiliki topology database yang sama, namun routing table-nya mungkin saja berbeda.

3. Stub Area

Stub dalam arti harafiahnya adalah ujung atau sisi paling akhir. Istilah ini memang digunakan dalam jaringan OSPF untuk menjuluki sebuah area atau lebih yang letaknya berada paling ujung dan tidak ada cabang-cabangnya lagi. Stub area merupakan area tanpa jalan lain lagi untuk dapat menuju ke jaringan dengan segmen lain. Area jenis ini memiliki karakteristik tidak menerima LSA tipe 4 dan 5. Artinya adalah area jenis ini tidak menerima paket LSA yang berasal dari area lain yang dihantarkan oleh router ABR dan tidak menerima paket LSA yang berasal dari routing protokol lain yang keluar dari router ASBR (LSA tipe 4 dan 5). Jadi dengan kata lain, router ini hanya menerima informasi dari router-router lain yang berada dalam satu area, tidak ada informasi routing baru di router. Namun, yang menjadi pertanyaan selanjutnya adalah bagaimana area jenis ini dapat berkomunikasi dengan dunia luar kalau tidak ada informasi routing yang dapat diterimanya dari dunia luar. Jawabannya adalah dengan menggunakan default route yang akan bertugas menerima dan meneruskan semua informasi yang ingin keluar dari area tersebut. Dengan default route, maka seluruh traffic tidak akan dibuang ke mana-mana kecuali ke segmen jaringan di mana IP default route tersebut berada.

4. Totally Stub Area

Mendengar namanya saja, mungkin Anda sudah bisa menangkap artinya bahwa area jenis ini adalah stub area yang lebih diperketat lagi perbatasannya. Totally stub area tidak akan pernah menerima informasi routing apapun dari jaringan di luar jaringan mereka. Area ini akan memblokir LSA tipe 3, 4, dan 5 sehingga tidak ada informasi yang dapat masuk ke area ini. Area jenis ini juga sama dengan stub area, yaitu mengandalkan default route untuk dapat menjangkau dunia luar.

5. Not So Stubby Area (NSSA)

Stub tetapi tidak terlalu stub, itu adalah arti harafiahnya dari area jenis ini. Maksudnya adalah sebuah stub area yang masih memiliki kemampuan spesial, tidak seperti stub area biasa. Kemampuan spesial ini adalah router ini masih tetap mendapatkan informasi routing namun tidak semuanya. Informasi routing yang didapat oleh area jenis ini adalah hanya external route yang diterimanya bukan dari backbone area. Maksudnya adalah router ini masih dapat menerima informasi yang berasal dari segmen jaringan lain di bawahnya yang tidak terkoneksi ke backbone area. Misalnya Anda memiliki sebuah area yang terdiri dari tiga buah router. Salah satu router terkoneksi dengan backbone area dan koneksinya hanya berjumlah satu buah saja. Area ini sudah dapat disebut sebagai stub area. Namun nyatanya, area ini memiliki satu segmen jaringan lain yang menjalankan routing protokol RIP misalnya. Jika Anda masih mengonfigurasi area ini sebagai Stub area, maka area ini tidak menerima informasi routing yang berasal dari jaringan RIP. Namun konfigurasilah dengan NSSA, maka area ini bisa mengenali segmen jaringan yang dilayani RIP.

Perbandingan RIP dan OSPF

Perbandingan fitur utama:

Perbandingan Karakteristik:



content top